
Parallel Search with no Coordination?

Amos Korman1 and Yoav Rodeh2

1 CNRS and University Paris Diderot, Paris, France, amos.korman@irif.fr
2 Weizmann Institute, Rehovot, Israel, yoav.rodeh@gmail.com

Abstract. We consider a parallel version of a classical Bayesian search
problem. k agents are looking for a treasure that is placed in one of the
boxes indexed by N+ according to a known distribution p. The aim is to
minimize the expected time until the first agent finds it. Searchers run in
parallel where at each time step each searcher can “peek” into a box. A
basic family of algorithms which are inherently robust is non-coordinating
algorithms. Such algorithms act independently at each searcher, differ-
ing only by their probabilistic choices. We are interested in the price
incurred by employing such algorithms when compared with the case of
full coordination.
We first show that there exists a non-coordination algorithm, that know-
ing only the relative likelihood of boxes according to p, has expected run-
ning time of at most 10 + 4(1 + 1

k
)2T , where T is the expected running

time of the best fully coordinated algorithm. This result is obtained by
applying a refined version of the main algorithm suggested by Fraigni-
aud, Korman and Rodeh in STOC’16, which was designed for the context
of linear parallel search.
We then describe an optimal non-coordinating algorithm for the case
where the distribution p is known. The running time of this algorithm is
difficult to analyse in general, but we calculate it for several examples.
In the case where p is uniform over a finite set of boxes, then the al-
gorithm just checks boxes uniformly at random among all non-checked
boxes and is essentially 2 times worse than the coordinating algorithm.
We also show simple algorithms for Pareto distributions over M boxes.
That is, in the case where p(x) ∼ 1/xb for 0 < b < 1, we suggest the fol-
lowing algorithm: at step t choose uniformly from the boxes unchecked
in {1, . . . ,min(M, bt/σc)}, where σ = b/(b + k − 1). It turns out this
algorithm is asymptotically optimal, and runs about 2 + b times worse
than the case of full coordination.

? This work has received funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 648032).

1 Introduction

We consider a parallel variant of the classical Bayesian search problem, typically
attributed to Blackwell [6]. A treasure is placed in one of the boxes indexed by N+

according to some known distribution p. As p is known, we can assume that the
boxes are ordered so that p is non-increasing. Denote M = max {x | p(x) > 0},
which can be ∞. There are k agents that search for the treasure, aiming to
minimize the expected time until the first one finds it, where looking into a box
takes one unit of time. We shall assume that algorithms know the number of
searchers k.

If coordination is allowed, a simple application of the rearrangement inequal-
ity shows that letting agent i peek into box (t− 1)k + i at time t is an optimal
algorithm (see Appendix A). Denote this algorithm Acord, and note that its ex-
pected running time is

∑
x p(x)dx/ke, giving a speedup of essentially k compared

to just one searcher. However, as simple as this algorithm is, it is very sensitive
to faults of all sorts. For example, if one searcher crashes at some point during
the execution then the searchers may completely miss the treasure, unless the
protocol employs some mechanism for detecting such faults3.

A class of search algorithms which is of particular interest is non-coordinating
algorithms [1,17]. In such an algorithm, all searchers operate independently, ex-
ecuting the same protocol, differing only in the outcome of the flips of their
random coins. With such a strong restriction on the coordination, one cannot
expect that many search problems could be efficiently parallelized. However,
when such a parallelization can be achieved, the benefit can potentially be high,
not only in terms of saving in communication and overhead in computation, but
also in terms of robustness. To get some intuition, assume that an oblivious ad-
versary is allowed to crash at most f out of the k searchers at arbitrary points
in time during the execution. To overcome the presence of at most f faults, one
can simply run the non-coordinating algorithm that is designed for the case of
k − f searchers. If the running time of a non-coordinating algorithm without
crashes is T (k), then the running time of the new robust algorithm would be
at most T (k − f). This is because the correct operation as well as the running
time of a non-coordinating algorithm can only improve if more searchers than
planned are actually being used. Note that even when coordination is allowed,
one cannot expect to obtain robustness at a cheaper price since the number of
searchers that remain alive is in the worst case k − f .

For an algorithm A, and k ≥ 2, denote by Tk(A, x) the expected running
time if the treasure is placed at x, when running algorithm A with k searchers.
Note that by “running time” we actually mean the expected number of boxes
peeked into by each searcher, as we are mostly interested in query complexity.
Further, for a distribution p over the boxes, denote the expected time to find

3 It is actually an interesting and non trivial question to find efficient and robust
algorithms that are allowed to coordinate [8]. Of course, our non-coordinating algo-
rithms fall under this category, but one may potentially improve the running time
by allowing coordination.

the treasure when it is placed in one of the boxes according to p:

Tp,k(A) =
∑
x

p(x)Tk(A, x)

In this notation, the expected running time of the optimal coordinating algorithm
is Tp,k(Acord). We are interested in the connection between these two terms, and
specifically in identifying non-coordinating algorithms that minimize the additive
and multiplicative factors a and b such that:

Tp,k(A) ≤ a+ bTp,k(Acord)

We remark, for readability’s sake, the subscripts above, as well as most subscripts
in the text that follows, will be dropped when clear from context. Also, the
number of agents k ≥ 2 will be fixed and so omitted from formal statements.
This will many times go for p as well. Also note that there are distributions
where no algorithm can achieve finite running time, such as p(x) = c/x2, where
the expected placement of the treasure is unbounded. We shall therefore always
assume that

∑
x p(x)x <∞, and so, for example, T(Acord) is always defined.

1.1 Our Results

We first show that there exists a simple and highly efficient algorithm, denoted
Auniversal, which for large k enjoys a multiplicative factor that tends to 4. In this
algorithm, each agent, at phase t, checks two different uniformly chosen boxes of
those it did not check yet in {1, . . . , t(k + 1)}. This algorithm is universal in the
sense that it does not depend on the details of the distribution p, and assumes
only the knowledge of the relative likelihood of the boxes, that is, their order.

Theorem 1. T(Auniversal) ≤ 10 + 4
(

1− 1
k+1

)2
T(Acord)

Note that this gives improvement over the trivial one searcher for every k. Even
for k = 2 we get that for large enough x, this runs at 8/9’s the time of the lone
searcher.

Algorithm Auniversal remembers all the boxes it checked and so needs memory
which is linear in its running time. We also consider Amemory which at phase t
chooses uniformly two boxes in {1, . . . , tk}. This algorithm uses only logarithmic
memory in its running time, and for large number of searchers performs almost
as well:

Theorem 2. T(Amemory) ≤ 2 + 4T(Acord)

Both algorithms Auniversal and Amemory where actually given in [17] to tackle the
setting of linear search with an adversarially placed treasure. We note, however,
that when applied in our context, the bounds established in [17] only guarantee
that the additive term is some unknown, possibly large constant. To prove that
this constant is in fact small we had to refine the upper bound analysis of [17],
and prove tighter bounds on the Gamma function.

We next present Algorithm A?, that given access to the the exact distribution
p (and not only the order of the boxes), gives the optimal expected running time:

Theorem 3. For every non-coordinating algorithm A, T(A?) ≤ T(A).

An interesting property satisfied by this algorithm, is that at any time during
the execution, all boxes that previously received a positive probability to be
checked, are now going to be checked with equal probability.

Calculating the running time of A? can become challenging for specific distri-
butions, and the rest of the paper shows a few interesting examples. A simple one
is when p is the uniform distribution over a finite domain. In this case, running
A?, at each step each agent chooses a box uniformly among those it did not check
yet. This natural choice for an algorithm therefore turns out to be optimal, and
yields a multiplicative factor of essentially 2 when compared to Acord.

On the other extremity there are exponential distributions. Such distribu-
tions strongly concentrate the probability on the first few boxes, and so a good
algorithm would invest in optimizing the parallel performance on a constant
number of boxes. As we are concerned with non-trivial behavior over many
boxes, we turn our attention to investigate Pareto distribution, which spread
the distribution more gradually.

Specifically, we consider the family of Pareto distributions over M boxes,
thinking of M as large. Here, for some 0 < b < 1, for all x ≤ M , p(x) = I/xb,
where I is the normalization factor, and p(x) = 0 for larger x. While A? is opti-
mal, it is quite complex and difficult to analyse. We present a simple algorithm
Apareto that is asymptotically optimal. In Apareto, at step t, an agent chooses
uniformly from one of the boxes it did not check yet in {1, . . . ,min(M, bt/σc)},
where σ = b/(b+ k − 1).

Theorem 4. For 0 < b < 1,

lim
M→∞

TrM,b(Apareto)

TrM,b(Acord)
= kσ(2− σ) +

k

k + 1
(2− b)(1− σ)2

Furthermore, no non-coordinating algorithm can achieve a better limit bound.

When b is close to 1, then σ ≈ 1/k and the factor becomes (3k − 1)/(k + 1).
For k = 2 this is 5/3 compared to 16/9 achieved by Auniversal, and for large k
this tends to 3 as opposed to 4. For smaller b’s the result is not as clean, but
assuming k is large, then σ ≈ b/k, and we get that the ratio is about 2 + b. This
makes sense, as when b approaches 0, the distribution becomes uniform, where
we already know that this factor is 2 for large k.

Finally, we note that most of our algorithms are very simple and hence appli-
cable. From the technical point of view, our results illustrate deep connections
between the general probabilistic parallel search setting considered here, and the
setting of parallel linear search studied in [17].

1.2 Related work

The study of parallel search by non-coordinating algorithms has recently been
advocated by Fraigniaud, Korman and Rodeh as a simple way to obtain robust-
ness while avoiding communication overheads [17]. The setting therein, however,
differs from ours by two fundamental characteristics: First, they assumed that
the treasure is placed by an adversary. The second major difference is that they
focused on a linear search setting (see also [4,5,9]), in which the boxes are lin-
early ordered and the objective is to find a treasure placed in a box in time that
is compared to its index. That is, if the treasure is placed in index x, then the
running time of the parallel algorithm should be compared to x/k. Although
this linear search setting may seem somewhat specific compared to the setting
studied in the current paper, it turns out that there are important connections
between the two settings, both in terms of techniques and results. See Section 2
for more details.

The case of a single searcher that searches for a randomly pleased treasure has
receives significant amount of attention from the communities of statistics, op-
erational research and computer science, see e.g., [6,11,20], and has been studied
under various settings, including the case that there are different costs associated
with queries, that queries can be noisy, and that the target may be mobile, see
the book [22]. As we initiate its parallel version, we consider only the most basic
form of the problem, yet, we note that most of our results can be extended to
the case in which weighted costs are associated with queries.

In general, when it comes to parallel search, most of the literature deals with
mobile agents that search graphs of different topologies, and typically employ
some form of communication between themselves. The literature on this subject
is vast, and some good references can be found, e.g., in [2,3,10,16,21]. The major
difference between our setting and the mobile agent setting, is that we allow
“random access” to the different boxes. That is, our searcher can jump between
different boxes at no cost. In other words, our focus is on the query complexity
rather than the move complexity.

Multiple random walkers are a special case of non-coordinating searchers. In
a series of papers [1,7,13,12] several results regarding hitting time, cover time and
mixing times are established, such as a linear speedup for several graph families
including expanders and random graphs. Non-coordinating searchers have also
been studied in the context of the ANTS problem, a parallel variant of the
cow-path problem on the grid [4,19], which was introduced in [14,15] motivated
by applications to central search foraging by desert ants. For example, it was
shown in [14,15] that a speedup of O(k) can be achieved with k non-coordinating
searchers, and that a linear speedup cannot be achieved unless the agents have
some knowledge of k.

Finally, BOINC [18] (Berkeley Open Infrastructure for Network Computing)
is a platform for volunteer computing supporting dozens of projects including
the famous SETI@home analyzing radio signals for identifying signs of extra
terrestrial intelligence. Most projects maintained at BOINC use parallel search
mechanisms where a central server controls and distributes the work to volun-

teers. The framework in this paper is a potential abstraction for projects op-
erated at platforms similar to BOINC with hundreds of thousands distributed
searchers.

2 Ordering of Boxes is Known

In [17], the authors consider a somewhat different scenario. The boxes are or-
dered linearly by some predefined importance, and the treasure is placed in one
of them by an adversary. In such a situation, a lone searcher will check the boxes
according to their order, and so box x will be checked by time x. They present
algorithm Auniversal, in which each agent, at phase t, checks two different uni-
formly chosen boxes of those it did not check yet in {1, . . . , t(k + 1)}. It is shown
there that:

lim sup
x→∞

T(Auniversal, x)

x
=

4k

(k + 1)2

and that it is in fact optimal in this way. That is, in that setting, it has the best
speedup compared to the lone searcher when taking large enough x.

If Auniversal would give this result for all x and not only large ones, it will
solve the case of a randomly placed treasure with surprising efficiency. All one
has to do is set the importance of the boxes according to the likelihood of the
treasure being placed there. The following claim is proved in Appendix C.1 via
a refined analysis of that done in [17], and shows that the limsup only hides a
small additive term:

Claim 5. For all x, T(Auniversal, x) ≤ 10 + 4k
(k+1)2x.

A major ingredient in the proof is the following lemma:

Lemma 6. For integers b ≥ a ≥ 1, and 0 < φ ≤ 1,
∏b
i=a

i
i+φ ≤

(
a
b

)φ
.

Using properties of the Gamma function it is easy to see that the two sides of
the equation are asymptotically equal, but this is not enough to prove our result
as we need the inequality for small a and b as well. Using Claim 5 the following
is straightforward:

Theorem 1 (restated). T(Auniversal) ≤ 10 + 4
(

1− 1
k+1

)2
T(Acord)

Proof.

T(Auniversal) =
∑
x

p(x)Tk(Auniversal, x) ≤ 10 +
4k

(k + 1)2

∑
x

p(x)x

≤ 10 +
4k2

(k + 1)2

∑
x

p(x)
⌈x
k

⌉
= 10 + 4

(
1− 1

k + 1

)2

T(Acord)

ut

At [17], the authors introduce a memory efficient version of Auniversal, which we
present here, slightly altered, as Amemory. In it, each agent, at phase t, checks
two uniformly chosen boxes of those in {1, . . . , kt}. The following is proved in
Appendix C.2:

Claim 7. For all x, T(Amemory, x) ≤ 2 + 4
⌈
x
k

⌉
.

Note that for k ≤ 4 this is of no use, as running the trivial one searcher will do
better. This claim immediately proves,

Theorem 2 (restated). T(Amemory) ≤ 2 + 4T(Acord)

While Amemory is not optimal as Auniversal is, as k grows the difference between
them grows smaller, and Amemory’s simplicity and efficiency make it an outstand-
ing candidate for real life purposes.

3 Exact Distribution is Known

Ignoring the small additive term in Theorem 1, as k grows larger we get that
Auniversal is about 4 times worse than the best coordinating algorithm. In the
remainder of the paper we show it is possible to improve on this if the exact
distribution is known.

3.1 Preliminaries

Consider a non-coordinated algorithm A that is running on k agents. Focusing
on just one agent, denote by A(x, t) the probability that by time t, box x was not
already checked by this agent. Hence, the probability that none of the k agents
checked x by time t is A(x, t)k. In fact, as we shall soon see, the information
encoded in this functional view of A is all that is needed to assess its running
time. First note:

Observation 8. The function corresponding to algorithm A satisfies A(x, 0) =
1 for all x. Also, for all x and t ≥ 1:

A(x, t) = A(x, t− 1) · Pr
[
x wasn’t checked
at time t

∣∣∣∣ x wasn’t checked
prior to time t

]
Let us now consider such functions on their own, possibly without a corre-

sponding algorithm. Let4 N : N+ × N→ [0, 1]. For time t, denote:

CN (t) =
∑
x

1−N(x, t)

In the case of an algorithm A, CA(t) is the expected number of elements that
were checked by time t by just one of the searchers running A, and is therefore

4 The letter N stands for “probability of not being checked up to time”.

at most t. We say that N satisfies the column requirement at time t if CN (t) ≤ t.
Also, define the set of valid functions as:

V =
{
N : N+ × N→ [0, 1]

∣∣ ∀t, CN (t) ≤ t
}

and so functions corresponding to algorithms are always valid. Finally, the “run-
ning time” of N :

Tp,k(N) =
∑
x

p(x)
∑
t

N(x, t)k =
∑
t

∑
x

p(x)N(x, t)k

The sum on t is from 0 to∞, and these limits will be omitted whenever clear from
context. This is clearly defined so that T(A) is indeed the expected running time
of algorithm A, as T(A, x) =

∑
t Pr [x wasn’t found by time t] =

∑
tA(x, t)k.

To lower bound the running time of algorithms, we find the optimal N ∈ V,
in the sense that it minimizes T(N). For that, we introduce a generalized version
of the main Lemma of [17] which we prove in Appendix D. At this point we only
need a very simple version of the lemma, yet we present it in its full glory, as
we will need it later in the paper. The current version improves on the original
lemma of [17] as it applies to general measurable functions, instead of only
continuous and bounded ones. In addition, the measure theoretic proof is much
more elegant and concise than the original one.

3.2 Main Lemma

The notation that follows is in measure theory style. Fix some k ≥ 2 and let
(X,X , µ) be a measure space. For T ≥ 0, denote by V (T) the set of measurable
functions f : X → [0, 1] such that

∫
1 − f dµ ≤ T . For a measurable function

c : X → [0,∞), and α ≥ 0 define the function fc,α : X → [0, 1] as:

fc,α(x) =

{
1 c(x) = 0

min
(

1, αc(x)−
1
k−1

)
otherwise

Lemma 9. For a given c and T as above, if there is some h ∈ V (T) such that∫
chk dµ < ∞, then there exists α ≥ 0, such that fc,α ∈ V (T), and for every

g ∈ V (T),
∫
cfkc,α dµ ≤

∫
cgk dµ. Furthermore, this α is minimal among those

satisfying fc,α ∈ V (T).

Towards finding the optimal N ∈ V, fix some t, and then N ∈ V, means
∑
x 1−

N(x, t) ≤ t, and the aim is to minimize
∑
x p(x)N(x, t)k. As this can be done

for each t completely separately, Lemma 9 comes into play.

Claim 10. The following function L is in V, and achieves minimal T(·) over
all valid functions.

Lp,k(x, t) =

{
1 p(x) = 0

min(1, α(t)q(x)) otherwise

Where q(x) = p(x)−
1
k−1 , and for all t, α(t) ≥ 0 is the minimal such that Lp,k ∈

V.

Proof. Fix t. Setting X = N+ with the trivial measure µ(x) = 1 for all x, T = t
and c = p, Lemma 9 gives the values of the optimal N for this specific t. To
check the condition of the lemma, take the constant function h(x) = 1. Clearly
h ∈ V (t), and

∫
chk dµ =

∑
x p(x) = 1 <∞. ut

The following basically says that L, if thought of as an algorithm, never
rechecks a box. See the proof in Appendix B.

Observation 11. For every t < M , CL(t) = t, and for t ≥ M , L(x, t) = 0
everywhere.

As an illustration consider a simple example: k = 2, p(1) = 1/2, p(2) = 1/3,
and p(3) = 1/6. In this case, q(1) = 2, q(2) = 3 and q(3) = 6, and some quick
calculations show that α(1) = 1/5, α(2) = 1/11, and α(3) = 0. From these we
get the matrix L below:

t→
x↓ 0 1 2 3

1 1 0.4 2/11 0
2 1 0.6 3/11 0
3 1 1 6/11 0

Note that Observation 11 holds, as the sum of column t is indeed equal to M− t.

3.3 Optimal Algorithm

Although it may seem that every valid function N has a corresponding algo-
rithm, it is not at all clear, because the conditional probabilities arising from
Observation 8 quickly become complicated for general N . However, it turns out
that because of the specific structure L has, there is in fact an algorithm that
has it as its function.

For instance, a corresponding algorithm for the example above is: (1) choose
box 1 w.p. 0.6, and otherwise choose box 2. (2) choose box 3 w.p. 5/11, and
otherwise the unchosen box of 1 and 2. (3) choose the last remaining box. Note
especially step (2), where the remaining probability of 6/11 is used to check
the unchosen box B from 1 and 2, and indeed, by Observation 8, (2/11)/0.4 =
(3/11)/0.6 = 5/11, which is the probability of not checking B given that it was
not checked up to this point.

In this section we present Algorithm A?, which given p, calculates the function
L, and randomly chooses boxes so as to get L as its function. We describe the
ideas behind it here, and the formal proof appears in appendix E.

Theorem 3 (restated). For every non-coordinating algorithm A, T(A?) ≤ T(A).

At step t, the first thing A? does is calculate the values of L(x, t) for all x, so
that it can recreate them with its random choices. For that it needs to calculate
α(t), which by Observation 11 means solve the equation:

t =
∑
x

1− L(x, t) =
∑
x

1−min(1, α(t)q(x)) (1)

Algorithm A?

for t← 1 to M do
for y ← ac(t− 1) + 1 to ∞ do . Calculate ac(t), α(t)

if
∑y

x=1 1− q(x)/q(y) > t then
ac(t)← y − 1
α(t)← (ac(t)− t)/

∑
x≤ac(t) q(x)

from unchecked boxes x ≤ ac(t) . Choose one box
if x ≤ ac(t− 1) then

Check x w.p. 1− α(t)/α(t− 1)
else

Check x w.p. 1− α(t)q(x)

The first step is to figure out which x’s actually contribute something to this
sum. Say box x is active at time t if L(x, t) < 1. As L is non-decreasing in x,
there is some ac(t), s.t. the set of active boxes at time t is {1, . . . , ac(t)}. To
calculate ac(t), A? gradually decreases α(t), while keeping the column require-
ment satisfied. The point is, x is active when α(t) < 1/q(x), and so to see who
is active, it needs to only check α(t) = 1/q(1), 1/q(2), Once ac(t) is found,
solving (1) and finding α(t) is straightforward.

Now that L(x, t) is calculated, A? randomly chooses a box to check according
to it, using the fact that up to this point, the probability that box x was not
checked is L(x, t− 1). If a box was not active, and now is, then clearly it should
be checked with probability 1− q(x)α(t). If it was already active, then it should
change from q(x)α(t − 1) to q(x)α(t), which by Observation 8 means it should
be checked with probability 1−α(t)/α(t−1). Fortunately, all these probabilities
sum up to 1.

As an interesting side note, observe that at each step, all previously active
yet unchecked boxes get the same probability of being checked. Moreover, this
probability does not depend at all at the previous choices made by the algorithm.
This point sounds counter-intuitive from a Bayesian point of view, as we would
expect a rescaling of the probabilities that differs according to the history we’ve
already seen.

An important point is that A? has at each step a finite set of boxes to choose
from. As p goes to 0, q goes to infinity, and so if there are an infinite number
of active boxes, then α must be 0, but that means that all boxes were surely
checked.

How does algorithm A? look for example distributions, and how does it com-
pare to Auniversal? In general it is quite difficult to analyse the exact running
time of this algorithm, but sometimes it can be done, as we shall see.

3.4 Uniform Distribution

The first example that comes to mind is when the treasure is uniformly placed
in one of the boxes {1, . . . ,M}. As q(x) is equal for all boxes, an agent running
A? will at the first step choose among them uniformly, and continue to do so

at each step, choosing from those that it did not check yet. This algorithm is
the most natural choice in this case, and indeed, by Theorem 3 it is optimal.
Analysis is simple:

T(A?) =

M∑
t=0

Pr [not found by time t] =

M∑
t=0

t−1∏
i=0

(
1− 1

M − i

)k

=

M∑
t=0

t−1∏
i=0

(
M − i− 1

M − i

)k
=

M∑
t=0

(
M − t
M

)k
=

1

Mk

M∑
i=0

ik

≈ 1

Mk

Mk+1

k + 1
=

M

k + 1

Note that with coordination, the expected running time would be about M/2k,
so we lose about a factor of 2 by non-coordination as opposed to 4 in the case
of Algorithm Auniversal. This algorithm is memory intensive, yet if we choose to
simplify and just choose uniformly at random a box from all boxes at each step,
we get that the running time is practically the same for large M :

∞∑
t=0

(
1− 1

M

)kt
=

1

1−
(
1− 1

M

)k ≈ M

k

4 Pareto Distributions

A? is optimal, but it is a complex algorithm. For a large family of Pareto distri-
butions we present a simplified algorithm that approximates the performance of
A? well. Let rb,M be the Pareto distribution with parameter b > 0 on M boxes.

Denote b(x) = 1/xb, and then rb,M (x) = I/b(x), where I = 1/
∑M
x=1 b(x) is the

normalization factor. Note that the function b(·) will be important on its own
right. We will especially be interested in the case5 where b < 1, as when M
grows, the fraction of the weight any specific box has goes to 0. For b > 1 that
is not true, and so we are left with too little leeway for simplifying A?.

In Algorithm Apareto, each agent, at its t-th step, chooses uniformly from
one of the boxes it did not check yet in {1, . . . ,min(M, bt/σc)}, where σ =
b/(b + k − 1). While Apareto is not optimal, asymptotically it is. Practically all
proofs of the section appear in Appendix F.

Theorem 4 (restated). For 0 < b < 1,

lim
M→∞

TrM,b(Apareto)

TrM,b(Acord)
= kσ(2− σ) +

k

k + 1
(2− b)(1− σ)2

Furthermore, no non-coordinating algorithm can achieve a better limit bound.

In what follows, o(1) means an expression that tends to 0 as M goes to infinity.

5 In fact, our lower bound result also hold for b = 1, but our upper bound proof does
not work for this case. However, we strongly believe the theorem to be true for b = 1
as well.

4.1 Lower Bound

The lower bound part of Theorem 4 is proved for all non-coordinating algorithms.
For that, instead of the set of functions in V, we consider a more general class
of functions and so lower bound the original question. For a measurable set X
denote:

F(X) = {N : X × [0,∞]→ [0, 1] |N(·, t) is measurable for every fixed t}

For an N ∈ F(X), we say that N satisfies the column requirements if for all t:
CN (t) =

∫
X

1−N(x, t) dx ≤ t. Such a function is called valid, and V(X) is the
set of all valid functions. Given an integer k ≥ 2 and some measurable function
p : X → [0,∞), define:

Up,k(N) =

∫ ∞
0

∫
X

p(x)N(x, t)k dx dt

This is a sort of equivalent of the T of algorithms, but is “unnormalized”, as p is
not necessarily a distribution. The following claim shows a connection between
algorithms and functions:

Claim 12. For every distribution p on {1, 2, . . . ,M} and algorithm A on the
M boxes, there is a function N ∈ V([1,M + 1]) such that Up′,k(N) ≤ Tp,k(A),
where p′ : [1,M + 1] → [0,∞) is any non-increasing measurable function that
agrees with p.

It is proved quite directly by taking N(x, t) = A(bxc, btc). This shows that lower
bounding the “running time” of functions in V([1,M + 1]) will lower bound the
running time of algorithms on M boxes. Next, fix some 0 < b < 1, and so the
function b(x) = 1/xb.

Observation 13. Let X be a finite interval of R+. Among all functions of N ∈
V(X) there is one that minimizes Ub,k(N). Denote it OPTb,X .

The proof of this observation uses the full power of Lemma 9 by finding the
optimal function of x for each specific t, in a very similar way to the optimality
proof of A?. Next, we introduce the important tool of zooming, which is used a
couple of times in what follows.

Definition 14. Given some N ∈ F(X) and u, v > 0, define the zooming of N
by (u, v) as: N−→u,v(x, t) = N(x/u, t/v), where N−→u,v(x, t) ∈ F(uX).

The intuitive meaning of it is that the algorithm is expanded to work on a
domain of size u times the original one, and slowed down by a factor of v. What
happens to the column requirement integrals and to the time?

Lemma 15. For N ∈ F(X) and u, v > 0, U(N−→u,v) = u1−bvU(N), and for all t,

CN−−→u,v (t) = uCN
(
t
v

)
.

This Lemma reduces our question to the running time of a specific set of optimal
functions:

Claim 16. For any Algorithm A that works on M boxes, denoting r = rb,M ,
and ε = 1/(M + 1):

Tr(A)

Tr(Acord)
≥ (1− o(1)) · k(2− b) · Ub(OPT[ε,1])

To use Claim 16 one should figure out who is OPT[ε,1]. This is possible using
Lemma 9, but the equations that calculate α(t) are differential and it is not
clear how to solve them. However, assuming M is large, we can trick our way
out of this via a clever use of zooming, and so reduce the problem to calculating
OPT(0,1] which is much simpler. Denote OPT = OPT(0,1]. Then:

Claim 17. limε→0

(
U(OPT[ε,1])/U(OPT)

)
= 1

All that is left to do, is figure out OPT and calculate its running time:

Claim 18. Denote σ = b/(b+ k − 1). Then, U(OPT) = σ(2−σ)
2−b + (1−σ)2

k+1 .

Finally, we can prove the lower bound and optimality part of Theorem 4. By
Claim 16, Claim 17 and Claim 18, for every algorithm A:

lim
M→∞

T(A)

T(Acord)
≥ k(2− b) lim

M→∞
U(OPT[1/(M+1),1])

= k(2− b)U(OPT) = kσ(2− σ) +
k(2− b)(1− σ)2

k + 1

4.2 Upper Bound

Below we describe the high level structure of the proof of the upper bound part
of Theorem 4. The missing proofs of this section appear in Appendix G. A simple
analysis of Acord and gives:

Claim 19.

T(Apareto)

T(Acord)
≤ k(2− b)

M2−b

∑
t

M∑
x=1

1

xb
Apareto(x, t)k

Since Apareto chooses uniformly from a set of unopened boxes at each stage, by
Observation 8, when x is in this set then:

Apareto(x, t) = Apareto(x, t− 1) ·
(

1− 1

|interval chosen from| − (t− 1)

)
Applying generously and then using Lemma 6, one gets:

Claim 20.

Apareto(x, t) ≤ (1 + o(1)) ·



1 t < dσxe(
dσxe
t

) b
k−1 dσxe ≤ t < dσMe

1
1−σ

(
1− t

M

) (dσxe
σM

) b
k−1 dσMe ≤ t < M

0 t ≥M

The point of this is that completely ignoring the rounding up operations, this
is exactly OPT(x/M, t/M), which appears in explicit form in (8) of Claim 18.
Indeed, using very careful needlework math to get rid of these roundings, we
show what would otherwise be a simple claim:

Claim 21.

1

M2−b

M∑
t=0

M∑
x=1

1

xb
Apareto(x, t)k ≤ (1 + o(1))U(OPT)

Plugging this into Claim 19 gives:

T(Apareto)

T(Acord)
≤ (1 + o(1))k(2− b)U(OPT)

Claim 18 gives the value of U(OPT), and concludes the upper bound proof of
Theorem 4 in exactly the same fashion as the end of the lower bound proof of
this theorem.

References

1. Alon, N., Avin, C., Koucky, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many
Random Walks Are Faster Than One. In: Proceedings of the Twentieth Annual
Symposium on Parallelism in Algorithms and Architectures. pp. 119–128. SPAA
’08, ACM, New York, NY, USA (2008), http://doi.acm.org/10.1145/1378533.
1378557

2. Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V.: Search
theory: A game theoretic perspective. Springer (2013)

3. Alpern, S., Gal, S.: The theory of search games and rendezvous. International Series
in Operations Research & Management Science, Springer (2003)

4. Baezayates, R., Culberson, J., Rawlins, G.: Searching in the Plane. Inf. Comput.
106(2), 234–252 (Oct 1993), http://dx.doi.org/10.1006/inco.1993.1054

5. Beck, A.: On the linear search problem. Israel J. of Math 2(4), 221– 228 (1964)
6. Blackwell, D.: Notes on dynamic programming. Unpublished notes, University of

California, Berkeley (1962)
7. Cooper, C., Frieze, A.M., Radzik, T.: Multiple Random Walks in Random Regular

Graphs. SIAM J. Discrete Math. 23(4), 1738–1761 (2009), http://dx.doi.org/
10.1137/080729542

8. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a
line with faulty robots. In: Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing. pp. 405–414. PODC ’16, ACM, New York, NY, USA
(2016), http://doi.acm.org/10.1145/2933057.2933102

9. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende,
S.M.: Linear search with terrain-dependent speeds. CoRR abs/1701.03047 (2017),
http://arxiv.org/abs/1701.03047

10. Das, S.: Mobile agents in distributed computing: Network exploration. Bulletin of
the European Association for Theoretical Computer Science (EATCS), No. 109
pp. 54–69 (2013)

11. David, A., Shmuel, Z.: Optimal sequential search: A bayesian approach. The Annals
of Statistics 13(3), 1213–1221 (1985)

12. Efremenko, K., Reingold, O.: How Well Do Random Walks Parallelize? In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques: 12th International Workshop,
APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA,
USA, August 21-23, 2009. Proceedings, pp. 476–489. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-03685-9_36

13. Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple random
walks. Theor. Comput. Sci. 412(24), 2623–2641 (2011), http://dx.doi.org/10.
1016/j.tcs.2010.08.010

14. Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized Collabora-
tive Search and Implications for Biology. In: Distributed Computing - 26th Interna-
tional Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings.
pp. 61–75 (2012), http://dx.doi.org/10.1007/978-3-642-33651-5_5

15. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative search on the
plane without communication. In: ACM Symposium on Principles of Distributed
Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18, 2012. pp. 77–86
(2012), http://doi.acm.org/10.1145/2332432.2332444

16. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile
robots. Morgan & Claypool Publishers (2012)

http://doi.acm.org/10.1145/1378533.1378557
http://doi.acm.org/10.1145/1378533.1378557
http://dx.doi.org/10.1006/inco.1993.1054
http://dx.doi.org/10.1137/080729542
http://dx.doi.org/10.1137/080729542
http://doi.acm.org/10.1145/2933057.2933102
http://arxiv.org/abs/1701.03047
http://dx.doi.org/10.1007/978-3-642-03685-9_36
http://dx.doi.org/10.1016/j.tcs.2010.08.010
http://dx.doi.org/10.1016/j.tcs.2010.08.010
http://dx.doi.org/10.1007/978-3-642-33651-5_5
http://doi.acm.org/10.1145/2332432.2332444

17. Fraigniaud, P., Korman, A., Rodeh, Y.: Parallel exhaustive search without coordi-
nation. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. pp. 312–323
(2016), http://doi.acm.org/10.1145/2897518.2897541

18. https://boinc.berkeley.edu/: BOINC, https://boinc.berkeley.edu/
19. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an Unknown Environment: An

Optimal Randomized Algorithm for the Cow-path Problem. In: Proceedings of
the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 441–447.
SODA ’93, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
(1993), http://dl.acm.org/citation.cfm?id=313559.313848

20. Milton, C., C.: A sequential search procedure. The Annals of Mathematical Statis-
tics 38(2), 494–502 (1967)

21. Prencipe, G.: Autonomous mobile robots: A distributed computing perspec-
tive. Algorithms for Sensor Systems - 9th International Symposium on Al-
gorithms and Experiments for Sensor Systems, Wireless Networks and Dis-
tributed Robotics, ALGOSENSORS 2013, Sophia Antipolis, France, September
5-6, 2013, Revised Selected Papers pp. 6–21 (2013), http://dx.doi.org/10.1007/
978-3-642-45346-5_2

22. Stone, D., L.: Theory of optimal search, 2nd edition. Topics in Operations Research
Series (2001)

http://doi.acm.org/10.1145/2897518.2897541
https://boinc.berkeley.edu/
http://dl.acm.org/citation.cfm?id=313559.313848
http://dx.doi.org/10.1007/978-3-642-45346-5_2
http://dx.doi.org/10.1007/978-3-642-45346-5_2

Appendix

A Coordinating Agents

Observation 22. Acord is optimal among coordinating algorithms, and

T(Acord) =
∑
x

p(x)
⌈x
k

⌉
Proof. Coordinating k agents can be viewed as one algorithm that works in
phases, where in each phase it can check k boxes. The aim is then to minimize
the expected number of phases until the treasure is found. In this scenario, as
there is no feedback from the algorithm’s choices until the treasure is found, any
randomized strategy can be seen as a distribution over deterministic algorithms.
It follows then, that it is enough to consider deterministic algorithms.

W.l.o.g, as this cannot harm the running time, each box is checked once and
in each phase there are exactly k boxes that are being checked. Now,

T(A) =
∑
x

p(x)T (x)

Where T (x) is the phase where x is checked. By the assumption above, the
sequence T (1), T (2), . . . contains exactly k copies of each positive integer (rep-
resenting a phase number). Since p(x) is a non-increasing sequence, then by the
rearrangement inequality, T(A) is minimized when the T (x) are arranged in a
non-decreasing order, which is exactly algorithm Acord. Its running time is clear
from definitions. ut

B Observation 11

Observation 11 (restated). For every t < M , CL(t) = t, and for t ≥ M ,
L(x, t) = 0 everywhere.

Proof. For t ≥M , α(t) = 0 satisfies the column requirement, and is as required.
Next assume that 0 < t < M . Clearly, in this case α(t) 6= 0, as otherwise the
column requirement is violated. Assume by contradiction that CL(t) 6= t, and
since L is valid this means that CL(t) < t.

Note that since p(x) goes to zero, q(x) goes to infinity, and so there are only
a finite number of x’s where α(t)q(x) < 2. As α(t) > 0, we can reduce it slightly,
and this will only affect the value of L at these x’s. Making this change small
enough, will maintain the inequality CL(t) < t, and keep L valid. As this change
can only decrease L(x, t) at these points, T(L) does not increase. Contradicting
the minimality of α(t). ut

C Refined Analysis of the Algorithms of [17]

C.1 Efficiency of Auniversal

Claim 5 (restated). For all x, T(Auniversal, x) ≤ 10 + 4k
(k+1)2x.

Proof. Count the time in steps of size 2, so at each step Auniversal chooses two
new boxes. The algorithm might actually end mid-step, but this just means that
this is an over approximation.

The number of elements the algorithm chooses from at step t is (k + 1)t −
2(t− 1) = (k − 1)t+ 2. Box x starts to have some probability of being checked
at time s = dx/(k + 1)e, and for t ≥ s the probability of x not being checked by
time t is:

t∏
i=s

(
1− 2

(k − 1)i+ 2

)k
=

t∏
i=s

(
(k − 1)i

(k − 1)i+ 2

)k

=

t∏
i=s

(
i

i+ 2
k−1

)k
≤
(
s+ 1

t

) 2k
k−1

Where the last step is by Claim 23 proved in Appendix C.3 below. Denoting
a = 2k/(k − 1) the total running time for x is then at most (times 2):

s+ 2 +

∞∑
t=s+2

(
s+ 1

t

)a
As ((s + 1)/t)a is decreasing, we can bound the sum from above by taking the
integral but starting it at s+ 1 and not s+ 2. This gives the upper bound of:

s+ 2 +

∫ ∞
s+1

(
s+ 1

t

)a
dt = s+ 2 + (s+ 1)

∫ ∞
1

t−a dt = s+ 2 +
s+ 1

a− 1

= 1 + (s+ 1)

(
1 +

1
2k
k−1 − 1

)
= 1 +

(⌈
x

k + 1

⌉
+ 1

)(
1 +

k − 1

k + 1

)
≤ 1 +

(
x

k + 1
+ 2

)(
2k

k + 1

)
≤ 5 +

2k

(k + 1)2
s

Multipying by 2 gives the result. ut

C.2 Efficiency of Amemory

Claim 7 (restated). For all x, T(Amemory, x) ≤ 2 + 4
⌈
x
k

⌉
.

Proof. The proof proceeds in very similar to that of Theorem 5, yet is in fact a
little simpler. Count the time in steps of size 2.

Box x starts to have some probability of being checked at time s = dx/ke,
and for t ≥ s the probability of x not being checked by time t is:

t∏
i=s

((
1− 1

ki

)2
)k
≤

t∏
i=s

(
1− 1

ki+ 1

)2k

=

t∏
i=s

(
i

i+ 1
k

)2k

≤
(s
t

)2
Where the last step is by Lemma 6 below. The total running time for x is then
at most (times 2):

s+ 1 +

∞∑
t=s+1

(s
t

)2
As (s/t)2 is decreasing, we can bound the sum from above by taking the integral
but starting it at s and not s+ 1. This gives the upper bound of:

s+ 1 +

∫ ∞
s

(s
t

)2
dt = s+ 1 + s

∫ ∞
1

1

t2
dt = 2s+ 1

Multipying by 2 gives the result. ut

C.3 Gamma Function Property

Claim 23. For integers b ≥ a ≥ 1, and k ≥ 2,

b∏
i=a

i

i+ 2
k−1
≤
(
a+ 1

b

) 2
k−1

Proof. Let us start with the case k = 2. In this case, 2/(k−1) = 2. If a = b then
this is clearly true, as left side is at most 1, and right side at least 1. Otherwise,
the product is telescopic and we get:

b∏
i=a

i

i+ 2
=

a(a+ 1)

(b+ 1)(b+ 2)

It is indeed at most (a+1)2/b2, as its numerator is smaller, and its denominator
larger.

Regarding k ≥ 3. In this case, 2/(k − 1) ≤ 1, and so we can use Lemma 6
below, to get that the product in the claim is at most:

(a
b

) 2
k−1 ≤

(
a+ 1

b

) 2
k−1

ut

Lemma 6 (restated). For integers b ≥ a ≥ 1, and 0 < φ ≤ 1,
∏b
i=a

i
i+φ ≤(

a
b

)φ
.

Proof. By induction on a (somehow on b it doesn’t work..). If b = a, then we
should show a/(a + φ) ≤ 1, which is true. We therefore assume that the result
holds for a+ 1 and prove it for a:

b∏
i=a

i

i+ φ
=

a

a+ φ
·

b∏
i=a+1

i

i+ φ
≤ a

a+ φ
·
(
a+ 1

b

)φ
We want to show:

a

a+ φ
·
(
a+ 1

b

)φ
≤
(a
b

)φ
⇐⇒ a

a+ φ
≤
(

a

a+ 1

)φ
⇐⇒

(
a+ φ

a

) 1
φ

≥
(
a+ 1

a

)
Take b = 1

a < 1 and x = 1
φ ≥ 1 the above is equivalent to:(

1 +
b

x

)x
≥ (1 + b)

If we show that the left side is increasing with x when x ≥ 1 then we are done.
We take the derivative (using an internet site):(

1 +
b

x

)x
·

(
ln

(
1 +

b

x

)
− b

x
(
1 + b

x

))
This is positive if (

1 +
b

x

)
ln

(
1 +

b

x

)
>
b

x

Take y = b
x ≤ 1. We want to show that

(1 + y) ln (1 + y) > y

We use the equality

ln (1 + y) =

∫ y

0

1

1 + t
dt

So

(1 + y) ln (1 + y) =

∫ y

0

1 + y

1 + t
dt >

∫ y

0

1 dt = y

as desired. ut

D Proof of Main Lemma

Recall that V (T) the set of measurable functions f : X → [0, 1] such that∫
1 − f dµ ≤ T . Also, for a measurable function c : X → [0,∞), and α ≥ 0 the

function fc,α : X → [0, 1] is:

fc,α(x) =

{
1 c(x) = 0

min
(

1, αc(x)−
1
k−1

)
otherwise

In what follows we will drop the subscript c when it is clear from context.

Lemma 9 (restated). For a given c and T as above, if there is some h ∈ V (T)
such that

∫
chk dµ <∞, then there exists α ≥ 0, such that fc,α ∈ V (T), and for

every g ∈ V (T),
∫
cfkc,α dµ ≤

∫
cgk dµ. Furthermore, this α is minimal among

those satisfying fc,α ∈ V (T).

Proof. A few of points to begin with:

1. All of the functions below are measurable, either by definition or by straight-
forward proof. Also, as all of them are positive, they will all have a defined
Lebesgue integral (though its value may be ∞.

2. Starting from the end, assuming that the existence of α is proved, we claim
that α = min {β ≥ 0 | fβ ∈ V (T)}. Existence proves that this set is not
empty. By monotonicity, if β < β′ then

∫
cfkβ dµ ≤

∫
cfkβ′ dµ, so all that

remains to show is that this minimum exists. If not, then there is some
sequence {βn}∞n=1 that approaches an infimum α. By the definitions, fβn
converges pointwise to fα. By Fatou’s lemma:∫

1− fα dµ ≤ lim inf
n→∞

∫
1− fβn dµ ≤ T

So fα ∈ V (T), proving this point.
3. Denote S = {x ∈ X | c(x) > 0}, the support of c. If T ≥ µ(S), then take
α = 0. We get f0(x) = 0 on S and 1 elsewhere, so

∫
1 − f0 dµ = µ(S) ≤ T ,

and so f0 ∈ V (T). Also,
∫
cfk0 dµ = 0 and is therefore optimal, so we are

done. We will therefore always assume that T < µ(S). Specifically, µ(S) > 0
and T < µ(X).

4. For any ε > 0, examine the set Y = {x ∈ X | c(x) > ε}. We claim that
µ(Y) <∞. Denote Z = {x ∈ X |h(x) < 1/2}. As h ∈ V (T),

T ≥
∫

1− hdµ ≥
∫
Z

1

2
dµ ≥ µ(Z)

2

So µ(Z) <∞, and therefore µ(Y ∩ Z) <∞. Also:

∞ >

∫
chk dµ ≥

∫
Y ∩¬Z

chk dµ ≥ ε

2k
· µ(Y ∩ ¬Z)

Together, this means that µ(Y) <∞.

The proof proceeds as usual in these cases, by a gradual increase of the generality
of the function c that we handle.

Indicator functions. First assume c = 1A is the indicator function of some set
A ⊆ X. By Item 4, µ(A) < ∞, and by Item 3, we can assume T < µ(A). For
any g ∈ V (T):∫

cgk dµ =

∫
A

gk dµ ≥ µ(A) ·
(

1

µ(A)

∫
A

g dµ

)k
≥ 1

µ(A)k−1
·
(
µ(A)−

∫
A

1− g dµ

)k
≥ (µ(A)− T)

k

µ(A)k−1

Where we used Jensen’s inequality for the case where the total measure is not
necessarily 1. Take α = (µ(A)− T)/µ(A). We get 0 < α < 1, and fα(x) = α for
every x ∈ A and 1 elsewhere. Also,∫

1− fα dµ =

∫
A

1− fα dµ =

∫
A

T

µ(A)
dµ = T

So fα ∈ V (T). Also, ∫
cfkα dµ =

∫
A

αk dµ =
(µ(A)− T)k

µ(A)k−1

And so fα is optimal. Note that it is a constant function on A.

Simple functions. In this case, c =
∑n
i=1 ci1Xi , where all ci > 0, and the Xi are

pair-wise disjoint. Also, by Item 4, all the Xi are of finite measure.
Given some g ∈ V (T), let us examine it on each of the Xi’s separately.

Denote Ti =
∫
Xi

1 − g dµ. Restricted to Xi, according to the case of indicator

functions, there is some constant gi ≥ 0, such that
∫
Xi

1 − gi dµ ≤ Ti, and∫
Xi
gki dµ ≤

∫
Xi
gk dµ.

We therefore define g′ = 1Y +
∑n
i=1 gi1Xi , where Y = X \∪ni=1Xi. According

to the above,∫
1− g′ dµ =

n∑
i=1

∫
Xi

1− gi dµ ≤
n∑
i=1

∫
Xi

1− g dµ ≤
∫

1− g dµ ≤ T

So g′ ∈ V (T). Also,∫
cgk dµ =

n∑
i=1

ci

∫
Xi

gk dµ ≥
n∑
i=1

ci

∫
Xi

gki dµ =

∫
cg′k dµ

So g′ is a better candidate than g, and we can therefore assume that g is constant
on each of the Xi’s, and can be written as g =

∑n
i=1 gi1Xi .

Our question can now be viewed as follows. Given c1, . . . , cn and µ1, . . . µn >
0, find the g1, . . . , gn ∈ [0, 1] among those satisfying

∑n
i=1 µi(1 − gi) ≤ T , that

minimize
∑n
i=1 cig

k
i . As the solution space is compact and the function to min-

imize is continues, there exists an optimal solution g1, . . . , gn.
Take some i such that 1 < i ≤ n. We can rebalance the values of g1 and gi as

we wish, as long as the sum µ1g1 +µigi remains the same. According to Lemma
24 below, these two values must satisfy:

gi = min

(
1,

(
c1
ci

) 1
k−1

g1

)

Taking α = c
1/(k−1)
1 g1, we obtain the form gi = min(1, αc

−1/(k−1)
i) which con-

cludes this case.

The general case. Let {cn}∞n=1 be a non-decreasing family of simple functions
that have c as their pointwise limit. According to the simple function case,
for each n there is some αn such that the function fn = fcn,αn gives minimal∫
cnf

k
n dµ among all functions of V (T).

If this sequence of αn is unbounded, we can keep only a sub-sequence where
αn → ∞ and define f(x) = limn→∞ fn(x) = 1 everywhere. Otherwise we can
keep only a converging sub-sequence of the αn, and denote its limit by α. Now,
define the function f(x) = fc,α(x) = limn→∞ fn(x). Either way the pointwise
limit of the fn’s exists and we denote it by f .

Examine the sequence of functions 1− fn. They all satisfy
∫

1− fn dµ ≤ T ,
and so by Fatou’s lemma:∫

1− f dµ ≤ lim inf
n→∞

∫
1− fn dµ ≤ T

And so f ∈ V (T). For all x, the function cfk is the pointwise limit of cnf
k
n . As

fn is optimal for cn,∫
cnf

k
n dµ ≤

∫
cnh

k dµ ≤
∫
chk dµ <∞

So all these integrals are jointly bounded and so their lim inf exists. Therefore,
by Fatou’s lemma: ∫

cfk dµ ≤ lim inf
n→∞

∫
cnf

k
n dµ <∞

Assume there is some g that is better than f . That is, there is some δ > 0 such
that: ∫

cgk dµ <

∫
cfk dµ− δ

Take large enough n, and use the fact that fn is optimal for cn,∫
cfk dµ− δ

2
<

∫
cnf

k
n dµ ≤

∫
cng

k dµ ≤
∫
cgk dµ

and we get a contradiction.
The only thing left to show is that f = fc,α for some α. As we’ve seen there

are two cases, and we have to deal with the case where f = 1.
By (3) there is some ε > 0 such that the set A = {x ∈ X | c(x) > ε} satisfies

µ(A) > 0, and by (4), µ(A) < ∞. If T < µ(A), then take the function g(x) =
1− T/µ(A) on this set and 1 elsewhere. Clearly g ∈ V (T). Also,∫

c1k dµ−
∫
cgk dµ =

∫
A

c · T

µ(A)
dµ ≥ εT > 0

As f is optimal, it cannot be the function 1 and must be of the required form. If
T > µ(A), proceed in the same way, except g(x) = 0 on A and 1 elsewhere. ut

D.1 Lemma for 2

Lemma 24. Let k ≥ 2, c1, c2, µ1, µ2 > 0, and M ≤ µ1 +µ2. The minimal value
of µ1c1g

k
1 + µ2c2g

k
2 , where g1, g2 ∈ [0, 1] and µ1g1 + µ2g2 = M is achieved only

when:
g1 = min

(
1, (c2/c1)

1
k−1 · g2

)
Proof. Let c = c2/c1, and µ = µ2/µ1. Setting N = M/µ1, we can write the
lemma equivalently as follows. Assuming N ≤ 1+µ, knowing that g1+µg2 = N ,
the g1, g2 ∈ [0, 1] minimizing gk1 + cµgk2 satisfy g1 = min

(
1, c1/(k−1)g2

)
.

Denoting g2 = (N − g1)/µ, we want to minimize:

gk1 +
c

µk−1
(N − g1)k

We take the derivative w.r.t. g1:

k

(
gk−11 − c

µk−1
(N − g1)k−1

)
(2)

This is zero exactly when:

g1 = c
1
k−1 · N − g1

µ

(
= c

1
k−1 g2

)
(3)

We get:

g1 =
c

1
k−1

µ+ c
1
k−1

N (4)

We take the second derivative (the first was (2)),

k(k − 1)

(
gk−21 +

c

µk−1
(N − g1)k−2

)
If we look at g1’s in the range [0, N], this is always strictly positive, meaning our
function is U shaped there. Also, by (4) the minimum is somewhere in [0, N].
Recall that g1 ∈ [0, 1]. If the bottom of the U is in [0, 1] then as we’ve seen in
(3) we get the lemma. Otherwise it must be somewhere in (1, N], and so our
minimum would be at g1 = 1. Note that it is unique. ut

E Optimality proof of A?

Theorem 3 (restated). For every non-coordinating algorithm A, T(A?) ≤ T(A).

Proof. First, A? calculates α(t) and ac(t). Note that y ≤ ac(t) iff α(t) < 1/q(y),
and so, to calculate ac(t), it is enough to check values for α(t) that are equal to
1/q(y) for y > ac(t− 1). Once we know ac(t), by Observation 11:

t =
∑

x≤ac(t)

1− α(t)q(x)

Solving this for α(t) is what the algorithm does.
To show that the next part of A? is at all valid, we show that the probabilities

of each step add up to at most 1. The number of boxes that were already active
at t− 1, and were not checked yet at time t is ac(t− 1)− (t− 1). So, summing
all the probabilities of the different boxes:

(ac(t− 1)− t+ 1)

(
1− α(t)

α(t− 1)

)
+

∑
ac(t−1)<x≤ac(t)

1− α(t)q(x) (5)

By Observation 11:∑
x≤ac(t−1)

1−α(t−1)q(x) = t−1 =⇒
∑

x≤ac(t−1)

α(t−1)q(x) = ac(t−1)−t+1

Plugging this is (5):∑
x≤ac(t−1)

(α(t− 1)− α(t))q(x) +
∑

ac(t−1)<x≤ac(t)

1− α(t)q(x)

=
∑

x≤ac(t)

1− α(t)q(x)−
∑

x≤ac(t−1)

1− α(t− 1)q(x)

By Observation 11 the first sum is t and the second is t− 1, and so the sum of
probabilities is indeed 1.

The last bit is to show that indeed A? = L. This is proved by induction on
t. For t = 0, L(x, 1) = A?(x, 1) for all x. Assume equality for t− 1 and we prove
it for t. For x ≤ ac(t − 1), A?(x, t − 1) = L(x, t − 1) = α(t − 1)q(x). Using
Observation 8:

A?(x, t) = A?(x, t− 1) · α(t)

α(t− 1)
= α(t− 1)q(x) · α(t)

α(t− 1)
= L(x, t)

For ac(t− 1) < x ≤ ac(t), it is straightforward. ut

F Lower Bounding Pareto Distributions

F.1 Claim 12

Claim 12 (restated). For every distribution p on {1, 2, . . . ,M} and algorithm
A on the M boxes, there is a function N ∈ V([1,M + 1]) such that Up′,k(N) ≤
Tp,k(A), where p′ : [1,M+1]→ [0,∞) is any non-increasing measurable function
that agrees with p.

Proof. Define N(x, t) = A(bxc, btc). For any t:

CN (t) =

∫ M+1

1

1−A(bxc, btc) dx =

M∑
x=1

1−A(x, btc) = CA(btc) ≤ btc ≤ t

So N satisfies the column requirements. Next,

Up′,k(N) =

∫ ∞
0

∫ M+1

1

p′(x)A(bxc, btc)k dx dt

≤
∫ ∞
0

∫ M+1

1

p(bxc)A(bxc, btc)k dxdt

=

M∑
x=1

∞∑
t=0

p(x)A(x, t) = Tp,k(A)

ut

F.2 Observation 13

Observation 13 (restated). Let X be a finite interval of R+. Among all func-
tions of N ∈ V(X) there is one that minimizes Ub,k(N). Denote it OPTb,X .

Proof. Fix t. Setting c(x) = b(x) and T = t, Lemma 9 gives a function ft(x)
minimizing

∫
X
b(x)ft(x)k dx, under the condition

∫
X

1 − ft(x) dx ≤ t. To fulfil
the condition of the lemma, take h(x) = 0 for x ≤ t, and 1 elsewhere. Then∫
X

1− h(x) dx ≤ t, and as X is a finite interval. Also,∫
X

1

xb
h(x)k dx =

∫
X\[0,t]

1

xb
dx <∞

Putting all these t’s together by setting OPTb,X(x, t) = ft(x), we get that OPTb,X ∈
V(X). Also:

U(OPTb,X) =

∫ ∞
0

∫
X

1

xb
ft(x)k dx

And as the ft minimize the inner integral for any function in V(X), we get
that if this integral exists it is minimal. To show it exists, we note that the
function F (t) =

∫
X

1
xb
ft(x)k dx is non-increasing in t, and so is measurable.

This is because, if t < t′, ft ∈ V (t′), and so by minimality of ft′ , F (ft′) ≤ F (ft).
This means that U(OPTb,X) is defined, although it might be ∞. ut

F.3 Zooming Lemma

Lemma 15 (restated). For N ∈ F(X) and u, v > 0, U(N−→u,v) = u1−bvU(N),

and for all t, CN−−→u,v (t) = uCN
(
t
v

)
.

Proof. First:

U(N−→u,v) =

∫ ∞
0

∫
uX

1

xb
N(x/u, t/v)k dx dt

= uv

∫ ∞
0

∫
X

1

(xu)b
N(x, t)k dxdt = u1−bvU(N)

The column integrals:

CN−−→u,v (t) =

∫
uX

1−N(x/u, t/v) dx = u

∫
X

1−N(x, t/v) dx = uCN

(
t

v

)
ut

F.4 Claim 16

Claim 16 (restated). For any Algorithm A that works on M boxes, denoting
r = rb,M , and ε = 1/(M + 1):

Tr(A)

Tr(Acord)
≥ (1− o(1)) · k(2− b) · Ub(OPT[ε,1])

Proof. Recall r(x) = I/xb, where I = 1/
∑M
i=1 1/xb. We take r′ to be the exten-

sion of this on all of [1,M+1]. Then, by Claim 12 there is some N ∈ V([1,M+1])
such that:

Tr(A) ≥ Ur′(N) = I · Ub(N)

Where the last step is trivial when examining the definition of U. Consider
N ′ = N−→ε,ε. By Lemma 15 and the fact that N satisfies the column requirements,

CN ′(t) = εCN

(
t

ε

)
≤ ε · t

ε
= t

So N ′ ∈ V([ε, 1]). Also, by the same lemma,

Ub(N ′) =
1

(M + 1)2−b
Ub(N)

Together with the fact that Ub(N ′) ≥ Ub(OPT[ε,1]), we obtain:

Tr(A) ≥ (M + 1)2−b · I · Ub(OPT[ε,1])

The running time of Acord is:

Tr(Acord) =

M∑
x=1

I

xb

⌈x
k

⌉
≤

M∑
x=1

I

xb

(x
k

+ 1
)

=
I

k

M∑
x=1

x1−b + 1

≤ 1 +
I

k

∫ M+1

1

x1−b dx = 1 +
I

k

(M + 1)2−b

2− b

Where we used the fact that x1−b is monotonically non-decreasing. Together:

Tr(A)

Tr(Acord)
≥

(M + 1)2−b · I · Ub(OPT[ε,1])
1 + I

k
(M+1)2−b

2−b

=
1

k(2−b)
I(M+1)2−b

+ 1
· k(2− b)Ub(OPT[ε,1])

As b > 0, then I−1 =
∑M
i=1 1/xb = o(M), and so the first factor tends to 1 as

M tends to infinity. ut

F.5 Getting Rid of ε

Claim 17 (restated). limε→0

(
U(OPT[ε,1])/U(OPT)

)
= 1

Proof. For the sake of this proof, denote E = OPT[ε,1]. To show that the limit
is at most 1, define OPT′ to be OPT restricted to [ε, 1]. It is easy to see that
OPT′ ∈ V([ε, 1]), and so U(OPT′) ≥ U(E). Also, it is clear that U(OPT′) ≤ U(OPT),
which concludes this side.

To show that the limit is indeed 1, we construct a new function E′ that will
span the whole range of x’s from 0 to 1, with little change to U(E). This will be
done by slowing E down, and using what we saved in the column integrals to
visit the x’s between 0 and ε using our optimal solution, running it fast enough
so it does not incur a big difference in U(E).

Fix some a < 1 to be determined later. Define:

E′(x, t) =

{
OPT−−−−−−→

ε,ε/(1−a) x ≤ ε
E−−−→

1,1/a
x > ε

Since the zoomed version of OPT here is defined on the x’s in (0, ε] and the zoomed
E is on those in [ε, 1], we get that for all t:

CE′(t) = COPT−−−−−−−→
ε,ε/(1−a)

(t)+CE−−−→
1,1/a

(t) = εCOPT

(
1− a
ε

t

)
+CE(at) ≤ ε1− a

ε
t+at = t

where we used Lemma 15 and the fact that both OPT and E satisfy the column
requirements. So E′ ∈ V((0, 1]) and by the optimality of OPT, U(E′) ≥ U(OPT).
Again, by Lemma 15:

U(OPT) ≤ U(E′) = U(OPT−−−−−−→
ε,ε/(1−a)) + U(E−−−→

1,1/a
) =

ε2−b

1− a
U(OPT) +

1

a
U(E)

And therefore, denoting ε′ = ε2−b,

U(E) ≥ a
(

1− ε′

1− a

)
U(OPT)

Taking a = 1 −
√
ε′, the factor becomes:

(
1−
√
ε′
)2

, which goes to 1 as ε goes

to 0. ut

F.6 Analysing OPT

Claim 18 (restated). Denote σ = b/(b + k − 1). Then, U(OPT) = σ(2−σ)
2−b +

(1−σ)2
k+1 .

Proof. We proceed as in Observation 13, and use Lemma 9 to figure out the
exact structure of OPT. For each fixed t it gives the function ft(x) minimizing

∫ 1

0
1
xb
ft(x)k dx, from all those satisfying the column requirement

∫ 1

0
1−ft(x) ≤ t.

As shown in the observation’s proof, OPT(x, t) = ft(x).
The first step is to understand what is ft(x). For t ≥ 1, the optimal ft is ob-

viously ft(x) = 0, since this satisfies the column requirement and has an integral

of 0. For t < 1, we have
∫ 1

0
1− ft(x) dx ≤ t, and that ft(x) = min(1, αtx

b/(k−1)).
So, given t, it is possible to deduce what its corresponding α is (we drop the sub-
script). For each t, denote by γ (a function of t) the smallest x where ft(x) = 1,
and in case this does not happen, set γ = 1. So:

γ = min

(
1,

1

α
k−1
b

)
(6)

for every t < 1, to minimize our target function, we would like ft to be the
smallest possible and so the column requirement will actually be an equality:

t =

∫ 1

0

1−min
(

1, αx
b

k−1

)
dx = γ −

∫ γ

0

αx
b

k−1 dx

We have two cases:

1. for all t where γ < 1 this equation is:

γ − t =

∫ γ

0

αx
b

k−1 dx (7)

From (6), and using the assumption that γ < 1, we get α = 1/γb/(k−1).
Plugging this in:

γ − t =

∫ γ

0

(
x

γ

) b
k−1

dx = γ

∫ 1

0

x
b

k−1 dx = γ
1

b
k−1 + 1

=
k − 1

b+ k − 1
γ

Recall σ = b/(b + k − 1), and so γ = t/σ. This means, that for all t < σ,
γ < 1 and then α = (σ/t)b/(k−1). For all other t, γ = 1.

2. for all t where γ = 1:

1− t =

∫ 1

0

αx
b

k−1 dx = α
1

b
k−1 + 1

= (1− σ)α

and so:

α =
1− t
1− σ

Putting all this together:

OPT(x, t) =


1 t ≤ σx(
σx
t

) b
k−1 σx < t ≤ σ

1−t
1−σx

b
k−1 σ < t ≤ 1

0 t > 1

(8)

Next, we wish to calculate U(OPT).

U(OPT) =

∫ 1

0

∫ 1

0

1

xb
OPT(x, t)k dxdt

=

∫ σ

0

(∫ γ

0

1

xb
(αx

b
k−1)k dx

)
dt+

∫ σ

0

(∫ 1

γ

1

xb
1k dx

)
dt

+

∫ 1

σ

(∫ 1

0

1

xb
(αx

b
k−1)k dx

)
dt

Focus on each term separately:

1. Here γ = t/σ < 1. Hence, the inner integral is:∫ γ

0

1

xb
(αx

b
k−1)k dx = αk−1

∫ γ

0

αx
b

k−1 dx = αk−1(γ − t) =
1

γb
(γ − t)

Where the second equality is due to (7). Then, as γ = t/σ, we get:(σ
t

)b(t
σ
− t
)

= σbt1−b
1− σ
σ

The whole integral if b < 1:

(1− σ)

∫ σ

0

(
t

σ

)1−b

dt = σ(1− σ)

∫ 1

0

t1−b dt =
σ(1− σ)

2− b

If b = 1 then it is σ(1− σ) which is the same.
2. Here, still, γ < 1. Two cases:

(a) If b = 1, the inner integral is:∫ 1

γ

1

x
dx = log(1)− log(γ) = − log(γ)

Plugging in γ = t/σ, and calculating the whole integral:∫ σ

0

− log(t/σ) dt = −σ
∫ 1

0

log(t) dt = σ

Last bit is because indefinite integral of log(x) is x log(x)− x.
(b) If b < 1: ∫ 1

γ

1

xb
dx =

1

1− b
(
1− γ1−b

)
Plugging in γ = t/σ, and calculating the whole integral:

1

1− b

∫ σ

0

1−
(
t

σ

)1−b

dt =
σ

1− b

(
1−

∫ 1

0

t1−b dt

)
=

σ

1− b

(
1− 1

2− b

)
=

σ

2− b

So σ/(2− b) works for both cases.
3. Here γ = 1.∫ 1

0

1

xb
(αx

b
k−1)k dx = αk−1

∫ 1

0

αx
b

k−1 dx = αk−1(1− t)

Plugging in α = (1− t)/(1− σ) and calculating the whole integral:

1

(1− σ)k−1

∫ 1

σ

(1− t)k dt =
1

(1− σ)k−1

∫ 1−σ

0

tk dt

=
1

(k + 1)(1− σ)k−1
(1− σ)k+1 dt =

(1− σ)2

k + 1

In total:
σ(1− σ)

2− b
+

σ

2− b
+

(1− σ)2

k + 1
=
σ(2− σ)

2− b
+

(1− σ)2

k + 1
ut

G Upper Bounding Pareto Distributions

G.1 Bounding the ratio T(Apareto)/T(Acord)

Claim 19 (restated).

T(Apareto)

T(Acord)
≤ k(2− b)

M2−b

∑
t

M∑
x=1

1

xb
Apareto(x, t)k

Proof. Setting I = (
∑M
x=1 1/xb)−1, the running time of Acord is (noting that

x1−b is non-decreasing):

T(Acord) =

M∑
x=1

I

xb

⌈x
k

⌉
≥ I

k

M∑
x=1

x1−b ≥ I

k

∫ M

0

x1−b dx =
I

k

M2−b

2− b

So:

T(Apareto)

T(Acord)
=

∑
t

∑M
x=1

I
xb
Apareto(x, t)k

T(Acord)
≤ k(2− b)

M2−b

∑
t

M∑
x=1

1

xb
Apareto(x, t)k

ut

G.2 Figuring out Apareto’s Function

Claim 20 (restated).

Apareto(x, t) ≤ (1 + o(1)) ·



1 t < dσxe(
dσxe
t

) b
k−1 dσxe ≤ t < dσMe

1
1−σ

(
1− t

M

) (dσxe
σM

) b
k−1 dσMe ≤ t < M

0 t ≥M

Proof. As mentioned, since Apareto chooses uniformly from a set of unopened
boxes at each stage, by Observation 8, when x is in this set then:

Apareto(x, t) = Apareto(x, t− 1) ·
(

1− 1

|interval chosen from| − (t− 1)

)
Also,

1. Fix x. When x > bt/σc it has no probability of being checked, and as x is an
integer, this means x > t/σ, and so t < σx. It therefore starts being checked
when t = dσxe.

2. The checking is over all unchosen boxes when M ≤ bt/σc ≤ t/σ. This starts
when t = dMσe.

Combining all this together gives:

Apareto(x, t) ≤


1 t < dσxe∏t
i=dσxe

(
1− 1

i/σ−i+1

)
dσxe ≤ t < dσMe∏dσMe−1

i=dσxe

(
1− 1

i/σ−i+1

)∏t
i=dσMe

(
1− 1

M−i+1

)
dσMe ≤ t < M

0 t ≥M

Where i/σ replaces bi/σc in the probabilities, as it only increases the result.
Now,

t∏
i=dσxe

(
1− 1

i/σ − i+ 1

)
=

t∏
i=dσxe

(1/σ − 1)i

(1/σ − 1)i+ 1

=

t∏
i=dσxe

i

i+ σ
1−σ

≤
(
dσxe
t

) b
k−1

Where Lemma 6 is used for last step. Similarly:

t∏
i=dσMe

(
1− 1

M − i+ 1

)
=

t∏
i=dσMe

M − i
M − i+ 1

=
M − dσMe

M − dσMe+ 1
· · · M − t

M − t+ 1

=
M − t

M − dσMe+ 1
≤ M − t
M − σM

=
1

1− σ

(
1− t

M

)
So:

Apareto(x, t) ≤



1 t < dσxe(
dσxe
t

) b
k−1 dσxe ≤ t < dσMe

1
1−σ

(
1− t

M

) (dσxe
dσMe−1

) b
k−1 dσMe ≤ t < M

0 t ≥M

Finally, multiply the third case by ((dσMe − 1)/σM)
b/(k−1)

. This will decrease
the final result by at most this factor, which tends to 1 as M goes to infinity,
giving the result.

G.3 Relating Apareto and OPT

Claim 21 (restated).

1

M2−b

M∑
t=0

M∑
x=1

1

xb
Apareto(x, t)k ≤ (1 + o(1))U(OPT)

Proof. Our aim is to show:

M∑
t=0

M∑
x=1

1

xb
Apareto(x, t)k ≤M2−b

∫ 1

0

∫ 1

0

1

xb
OPT(x, t)k dx dt (9)

while being quite loose in this comparison, as we can allow additive terms of
o(M2−b) and still get the result. Since OPT is non-increasing in t, then so is∫ 1

0
1
xb
OPT(x, t)k dx. The right side is then at least:

M1−b
M∑
t=1

∫ 1

0

1

xb
OPT(x, t/M)k dx

The case t = 0 contributes at most an additive
∑M
x=1 1/xb = o(M) to the left

side of 9, and so is insignificant. This is in fact true for any particular t. So to
prove (9), we will show that for all but a small constant number of t’s:

M∑
x=1

1

xb
Apareto(x, t)k ≤M1−b

∫ 1

0

1

xb
OPT(x, t/M)k dx (10)

Where here, additive terms of order o(M1−b) are considered insignificant.
Putting side by side Apareto’s upper bound as presented in Claim 20 (ignoring

the 1 + o(1) factor which does not bother us), and the explicit form of OPT of
(8), shows their resemblance:

1 t < dσxe(
dσxe
t

) b
k−1 dσxe ≤ t < dσMe

1
1−σ

(
1− t

M

) (dσxe
σM

) b
k−1 dσMe ≤ t < M

0 t ≥M


1 t ≤ σx(
σx
t

) b
k−1 σx < t ≤ σ

1−t
1−σx

b
k−1 σ < t ≤ 1

0 t > 1

Fix some t, and set f(x) = OPT(x/σ, t/M)k. Clearly OPT(x, t/M)k = f(σx), but
also:

Apareto(x, t)k ≤ OPT

(
dσxe
σM

,
t

M

)k
= f

(
dσxe
M

)
for all but possibly t = dσMe ± 1. So to prove (10), it will be enough to prove
that for any function f where f(·) ∈ [0, 1]:

M∑
x=1

1

xb
f

(
dσxe
M

)
≤M1−b

∫ 1

0

1

xb
f(σx) dx (11)

Assuming the integral above is defined. Again, additive terms of order o(M1−b)
are considered insignificant. The next step is to approximate the integral by a
very specific Riemann sum. This gives a result that is correct up to a multi-
plicative factor that tends to 1, which is fine for our purpose. The n-th interval
is In = (in−1/M, in/M], where in = dn/σe. In is sampled at n/σM , which is
clearly an inner point of In.

For example, if σ = 0.3 then I1 = (1, 4], I2 = (4, 7], I3 = (7, 10], I4 = (10, 14],
and the respective sample points are 3 1

3 , 6
2
3 , 10 and 13 1

3 . Of course, all of this
should be divided by M . Note that the size of the intervals is about 1/Mσ and
so tends to 0, as required.

The right hand side of (11) is approximated by:

M1−b · 1

M

dσMe∑
n=1

(in − in−1)
1

(n/σM)b
f(n/M) =

dσMe∑
n=1

(in − in−1)
f(n/M)

(n/σ)b

This can be written as:
M∑
x=1

f(nx/M)

(nx/σ)b
(12)

Where nx is defined to satisfy x ∈ (inx−1, inx], so that indeed, each term in the
original sum appears exactly in − in−1 times in the new sum (of course without
the factor of (in − in−1)). The condition on nx is actually

⌈
nx−1
σ

⌉
< x ≤

⌈
nx
σ

⌉
.

The following is proved in Appendix G.3:

Observation 25. If x and n are natural numbers, then⌈
n− 1

σ

⌉
< x ≤

⌈n
σ

⌉
⇐⇒ n = dσxe

Using this observation, (12) is:

M∑
x=1

1

(dσxe/σ)b
f

(
dσxe
M

)
≥

M∑
x=1

1

(x+ 1
σ)b

f

(
dσxe
M

)
Since b ≤ 1, xb is sub-linear, and so:

1

xb
− 1

(x+ 1
σ)b

=
(x+ 1

σ)b − xb

xb(x+ 1
σ)b

≤
1
σ

xb(x+ 1
σ)b
≤ 1

σx1+b

Noting that f(·) ≤ 1, the above is at least:

M∑
x=1

1

xb
f

(
dσxe
M

)
− 1

σ

M∑
x=1

1

x1+b

If b < 1, then the second term is bounded above by some constant independent
of M , and so in this case is o(M1−b), proving (11). ut

Proof of Rounding Observation

Observation 25 (restated). If x and n are natural numbers, then⌈
n− 1

σ

⌉
< x ≤

⌈n
σ

⌉
⇐⇒ n = dσxe

Proof. The case where n = σx is straightforward. Otherwise,

1.
n = dσxe =⇒ n > σx =⇒ x <

n

σ
=⇒ x <

⌈n
σ

⌉
Also,

n = dσxe =⇒ n− 1 < σx =⇒ n− 1

σ
< x =⇒

⌈
n− 1

σ

⌉
≤ x

But equality would mean that n− 1 = σx, which cannot be true.
2.

x <
⌈n
σ

⌉
=⇒ x <

n

σ
=⇒ σx < n

And,

x >

⌈
n− 1

σ

⌉
=⇒ x >

n− 1

σ
=⇒ σx > n− 1

So dσxe = n.
ut

	Parallel Search with no Coordination

